Imaginary cubic perturbation: numerical and analytic study

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 2 PT − symmetric pseudo - perturbation recipe ; an imaginary cubic oscillator with spikes

The pseudo-perturbative shifted l expansion technique PSLET is shown applicable in the non-Hermitian PT symmetric context. The construction of bound states for several PT symmetric potentials is presented, with special attention paid to V (r) = ir3 − α √ ir oscillators.

متن کامل

Analytic and numerical study of preheating dynamics.

We analyze the phenomenon of preheating, i.e. explosive particle production due to parametric amplification of quantum fluctuations in the unbroken symmetry case, or spinodal instabilities in the broken symmetry phase, using the Minkowski space O(N) vector model in the large N limit to study the non-perturbative issues involved. We give analytic results for weak couplings and times short compar...

متن کامل

On Analytic Functions with Positive Imaginary Parts

systems, each of which violates the like-numbered postulate and satisfies all the other postulates of the set. These examples are all arithmetic systems, the elements being the numbers 0 and 1. The symbol/(a , b) (mod 2) in an arithmetic system denotes the least positive residue modulo 2 obtained from /(a , b) by rejecting multiples of 2. The operations + and X are to be interpreted as the oper...

متن کامل

Tabulation of Cubic Function Fields with Imaginary and Unusual Hessian

We give a general method for tabulating all cubic function fields over Fq(t) whose discriminant D has odd degree, or even degree such that the leading coefficient of −3D is a non-square in Fq , up to a given bound on |D| = q. The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields. We present numerical data for cubic function fields o...

متن کامل

Analytic and numerical demonstration of quantum self-correction in the 3D Cubic Code

A big open question in the quantum information theory concerns feasibility of a selfcorrecting quantum memory. A quantum state recorded in such memory can be stored reliably for a macroscopic time without need for active error correction if the memory is put in contact with a cold enough thermal bath. In this paper we derive a rigorous lower bound on the memory time Tmem of the 3D Cubic Code mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2010

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/43/42/425301